Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
1.
PLoS One ; 19(5): e0302701, 2024.
Article in English | MEDLINE | ID: mdl-38728286

ABSTRACT

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Subject(s)
Arsenic Trioxide , Arsenicals , Arsenites , Autophagy , Mitochondria , Oxidative Stress , Oxides , Sodium Compounds , Arsenic Trioxide/pharmacology , Arsenites/pharmacology , Arsenites/toxicity , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Sodium Compounds/pharmacology , Arsenicals/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Oxides/pharmacology , Cell Death/drug effects , Membrane Potential, Mitochondrial/drug effects , Herpesvirus 4, Human/drug effects , Adenosine Triphosphate/metabolism , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/drug therapy
2.
Pol J Vet Sci ; 27(1): 95-105, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38511628

ABSTRACT

Arsenic is an important metalloid that can cause poisoning in humans and domestic animals. Exposure to arsenic causes cell damage, increasing the production of reactive oxygen species. Chitosan is a biopolymer obtained by deacetylation of chitin with antioxidant and metal ion chelating properties. In this study, the protective effect of chitosan on arsenic-induced nephrotoxicity and oxidative damage was investigated. 32 male Wistar-albino rats were divided into 4 groups of 8 rats each as control group (C), chitosan group (CS group), arsenic group (AS group), and arsenic+chitosan group (AS+CS group). The C group was given distilled water by oral gavage, the AS group was given 100 ppm/day Na-arsenite ad libitum with drinking water, the CS group was given 200 mg/kg/day chitosan dissolved in saline by oral gavage, the AS+CS group was given 100 ppm/day Na-arsenite ad libitum with drinking water and 200 mg/kg/day chitosan dissolved in saline by oral gavage for 30 days. At the end of the 30-day experimental period, 90 mg/kg ketamine was administered intraperitoneally to all rats, and blood samples and kidney tissues were collected. Urea, uric acid, creatinine, P, Mg, K, Ca, Na, Cystatin C (CYS-C), Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) levels were measured in serum samples. Malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT) and Superoxide dismutase (SOD) levels in the supernatant obtained from kidney tissue were analyzed by ELISA method. Compared with AS group, uric acid and creatinine levels of the AS+CS group were significantly decreased (p<0.001), urea, KIM-1, CYS-C, NGAL, and MDA levels were numerically decreased and CAT, GSH, and SOD levels were numerically increased (p>0.05). In conclusion, based on both biochemical and histopathological-immunohistochemical- immunofluorescence findings, it can be concluded that chitosan attenuates kidney injury and protects the kidney.


Subject(s)
Arsenic , Arsenites , Chitosan , Drinking Water , Renal Insufficiency , Rodent Diseases , Humans , Rats , Male , Animals , Arsenic/toxicity , Arsenic/analysis , Arsenic/metabolism , Lipocalin-2/analysis , Lipocalin-2/metabolism , Lipocalin-2/pharmacology , Chitosan/pharmacology , Chitosan/analysis , Chitosan/metabolism , Arsenites/analysis , Arsenites/metabolism , Arsenites/pharmacology , Uric Acid/analysis , Uric Acid/metabolism , Uric Acid/pharmacology , Creatinine , Drinking Water/analysis , Drinking Water/metabolism , Rats, Wistar , Kidney , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Renal Insufficiency/veterinary , Glutathione/metabolism , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Urea/metabolism , Rodent Diseases/metabolism
3.
Arch Microbiol ; 206(4): 194, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538852

ABSTRACT

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.


Subject(s)
Arsenic , Arsenites , Humans , Arsenic/pharmacology , Arsenic/metabolism , Arsenites/pharmacology , Arsenites/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Metals/pharmacology , Metals/metabolism , Drug Resistance, Microbial , Cefotaxime/metabolism , Cefotaxime/pharmacology , Tetracyclines/metabolism , Tetracyclines/pharmacology
4.
Arch Microbiol ; 205(10): 333, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712976

ABSTRACT

A novel arsenite resistant bacterial strain SSBW5 was isolated from the battery waste site of Corlim, Goa, India. This strain interestingly exhibited rapid arsenite oxidation with an accumulation of 5 mM arsenate within 24 h and a minimum inhibitory concentration (MIC) of 18 mM. The strain SSBW5 was identified as Paenarthrobacter nicotinovorans using 16S rDNA sequence analysis. Fourier-transformed infrared (FTIR) spectroscopy of arsenite-exposed cells revealed the interaction of arsenite with several important functional groups present on the cell surface, possibly involved in the resistance mechanism. Interestingly, the whole genome sequence analysis also clearly elucidated the presence of genes, such as GlpF, aioAB and aioE encoding transporter, arsenite oxidase and oxidoreductase enzyme, respectively, conferring their role in arsenite resistance. Furthermore, this strain also revealed the presence of several other genes conferring resistance to various metals, drugs, antibiotics and disinfectants. Further suggesting the probable direct or indirect involvement of these genes in the detoxification of arsenite thereby increasing its tolerance limit. In addition, clumping of bacterial cells was observed through microscopic analysis which could also be a strategy to reduce arsenite toxicity thus indicating the existence of multiple resistance mechanisms in strain SSBW5. In the present communication, we are reporting for the first time the potential of P. nicotinovorans strain SSBW5 to be used in the bioremediation of arsenite via arsenite oxidation along with other toxic metals and metalloids.


Subject(s)
Arsenites , Micrococcaceae , Arsenites/pharmacology , Oxidation-Reduction
5.
J Cell Biol ; 222(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37672657

ABSTRACT

Stress granules (SGs) are formed in the cytoplasm in response to various toxic agents and are believed to play a critical role in the regulation of mRNA metabolism during stress. In SGs, mRNAs are stored in an abortive translation initiation complex that can be routed to either translation initiation or degradation. Here, we show that G3BP, a phosphorylation-dependent endoribonuclease that interacts with RasGAP, is recruited to SGs in cells exposed to arsenite. G3BP may thus determine the fate of mRNAs during cellular stress. Remarkably, SG assembly can be either dominantly induced by G3BP overexpression, or on the contrary, inhibited by expressing a central domain of G3BP. This region binds RasGAP and contains serine 149 whose dephosphorylation is induced by arsenite treatment. Critically, a non-phosphorylatable G3BP mutant (S149A) oligomerizes and assembles SG. These results suggest that G3BP is an effector of SG assembly and that Ras signaling contributes to this process by regulating G3BP dephosphorylation.


Subject(s)
Endoribonucleases , Stress Granules , ras GTPase-Activating Proteins , Arsenites/pharmacology , Endoribonucleases/genetics , GTPase-Activating Proteins/genetics , RNA, Messenger/genetics
6.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298099

ABSTRACT

Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.


Subject(s)
Arsenites , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Arsenites/pharmacology , Urinary Bladder Neoplasms/metabolism , Carcinoma, Transitional Cell/pathology , Cisplatin , Antigens, Differentiation , Cell Proliferation , Apoptosis , Cell Line, Tumor , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
7.
BMC Microbiol ; 23(1): 134, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37193944

ABSTRACT

BACKGROUND: Arsenic (As) with various chemical forms, including inorganic arsenic and organic arsenic, is the most prevalent water and environmental toxin. This metalloid occurs worldwide and many of its forms, especially arsenite [As(III)], cause various diseases including cancer. Organification of arsenite is an effective way for organisms to cope with arsenic toxicity. Microbial communities are vital contributors to the global arsenic biocycle and represent a promising way to reduce arsenite toxicity. METHODS: Brevundimonas sp. M20 with arsenite and roxarsone resistance was isolated from aquaculture sewage. The arsHRNBC cluster and the metRFHH operon of M20 were identified by sequencing. The gene encoding ArsR/methyltransferase fusion protein, arsRM, was amplified and expressed in Escherichia coli BL21 (DE3), and this strain showed resistance to arsenic in the present of 0.25-6 mM As(III), aresenate, or pentavalent roxarsone. The methylation activity and regulatory action of ArsRM were analyzed using Discovery Studio 2.0, and its functions were confirmed by methyltransferase activity analysis and electrophoretic mobility shift assays. RESULTS: The minimum inhibitory concentration of the roxarsone resistant strain Brevundimonas sp. M20 to arsenite was 4.5 mM. A 3,011-bp arsenite resistance ars cluster arsHRNBC and a 5649-bp methionine biosynthesis met operon were found on the 3.315-Mb chromosome. Functional prediction analyses suggested that ArsRM is a difunctional protein with transcriptional regulation and methyltransferase activities. Expression of ArsRM in E. coli increased its arsenite resistance to 1.5 mM. The arsenite methylation activity of ArsRM and its ability to bind to its own gene promoter were confirmed. The As(III)-binding site (ABS) and S-adenosylmethionine-binding motif are responsible for the difunctional characteristic of ArsRM. CONCLUSIONS: We conclude that ArsRM promotes arsenite methylation and is able to bind to its own promoter region to regulate transcription. This difunctional characteristic directly connects methionine and arsenic metabolism. Our findings contribute important new knowledge about microbial arsenic resistance and detoxification. Future work should further explore how ArsRM regulates the met operon and the ars cluster.


Subject(s)
Arsenic , Arsenicals , Arsenites , Roxarsone , Arsenic/metabolism , Arsenites/pharmacology , Arsenites/metabolism , Base Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Methylation , Roxarsone/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Arsenicals/metabolism , Arsenicals/pharmacology , Operon , Methyltransferases/genetics , Methionine , Gene Expression Regulation, Bacterial , Trans-Activators/genetics
8.
Biometals ; 36(5): 1157-1169, 2023 10.
Article in English | MEDLINE | ID: mdl-37198524

ABSTRACT

Ionomics and transcriptomics were applied to demonstrate response of rice to arsenite [As(III)] stress in the current study. Rice plants were cultured in nutrient solutions treated with 0, 100 and 500 µg/L As(III) coded as CK, As1 and As5, respectively. The rice ionomes exhibited discriminatory response to environmental disturbances. Solid evidence of the effects of As(III) stress on binding, transport or metabolism of P, K, Ca, Zn and Cu was obtained in this work. Differentially expressed genes (DEGs) in the shoots were identified in three datasets: As1 vs CK, As5 vs CK and As5 vs As1. DEGs identified simultaneously in two or three datasets were selected for subsequent interaction and enrichment analyses. Upregulation of genes involved in protein kinase activity, phosphorus metabolic process and phosphorylation were detected in the rice treated with As(III), resulting in the maintenance of P homeostasis in the shoots. Zn and Ca binding genes were up-regulated since excess As inhibited the translocation of Zn and Ca from roots to shoots. Increased expression of responsive genes including HMA, WRKY, NAC and PUB genes conferred As tolerance in the rice plants to cope with external As(III) stress. The results suggested that As(III) stress could disturb the uptake and translocation of macro and essential elements by rice. Plants could regulate the expression of corresponding genes to maintain mineral nutrient homeostasis for essential metabolic processes.


Subject(s)
Arsenites , Oryza , Arsenites/pharmacology , Arsenites/metabolism , Oryza/genetics , Oryza/metabolism , Transcriptome/genetics , Homeostasis/genetics , Gene Expression Regulation, Plant , Plant Roots/metabolism
9.
Anticancer Res ; 43(6): 2551-2559, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37247915

ABSTRACT

BACKGROUND/AIM: Arsenite is a radiosensitizer of glioma cells both in vitro and in vivo; however, the underlying mechanism of action is unclear. Radiosensitizers specific for p53-deficient tumors are a promising adjunct to radiotherapy because, unlike normal cells, many tumor cells lack p53. Previously, we demonstrated that arsenite sensitizes the p53-deficient glioma cell line U87MG-E6 to X-rays. MATERIALS AND METHODS: Using flowcytometry, we expand these findings to p53-proficient U87MG cells exposed to heavy ion beams, including carbon and iron ions. RESULTS: Arsenite sensitized U87MG-E6, but not U87MG, cells to heavy ion beams and X-rays. Cell cycle analysis indicated that sensitization of U87MG-E6 was related to an increase in the percentage of cells in the late S/G2/M phases after combined treatment with arsenite, especially when carbon ion beams were used. Induction of γH2AX was significant in U87MG-E6, but not in U87MG, cells after irradiation with carbon ion beams plus arsenite. CONCLUSION: Arsenite sensitizes cells by increasing the percentage of cells in the late S/G2/M phases after irradiation, possibly via inhibition of DNA repair in the context of p53 deficiency. The findings provide information that may be useful for the development of advanced radiotherapy protocols.


Subject(s)
Arsenites , Glioma , Humans , Arsenites/pharmacology , Carbon , Carmustine , Cell Line, Tumor , Cell Survival , Glioma/pathology , Tumor Suppressor Protein p53/metabolism
10.
J Cell Sci ; 136(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36855954

ABSTRACT

Our previous studies have revealed that GADD45α is a liable proapoptotic protein, which undergoes MDM2-dependent constitutive ubiquitylation and degradation in resting cancer cells. Under chemotherapeutic agent (such as arsenite, 5-Fu and VP-16) exposure, DAPK1 functions as a novel p53 (also known as TP53) kinase, which induces phosphorylation of p53 at Ser15 and transactivates the p53 target Ets-1, to synergistically repress IKKß-dependent MDM2 stability, and ultimately removes the inhibitory effect of MDM2 on GADD45α, resulting in GADD45α accumulation and cell apoptosis. In the current study, we show that there is a strong induction of ISG20L1 (also known as AEN) expression in several cancer cell lines under exposure of arsenite and other chemotherapeutic agents. Surprisingly, although originally identified as a transcriptional target of p53, ISG20L1 induction was not controlled by p53. Instead, ISG20L1 functioned as upstream activator of p53 by interacting with DAPK1, and plays an essential role in promoting DAPK1-p53 complex formation and the subsequent activation of Ets-1/IKKß/MDM2/GADD45α cascade. Therefore, our findings have revealed novel function of ISG20L1 in mediating cancer cell apoptosis induced by chemotherapeutic agents via modulating activation of the DAPK1- and p53-dependent cell death pathway.


Subject(s)
Arsenites , Tumor Suppressor Protein p53 , Apoptosis , Arsenites/metabolism , Arsenites/pharmacology , I-kappa B Kinase/metabolism , I-kappa B Kinase/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exoribonucleases/metabolism
11.
Int J Hyg Environ Health ; 250: 114124, 2023 05.
Article in English | MEDLINE | ID: mdl-36989998

ABSTRACT

The mechanisms underlying the association between prenatal arsenic exposure and the development of metabolic diseases remain unclear. Aberrant adipogenesis and adipokine production are associated with increased risk for the development of metabolic diseases in susceptible populations. Generation of mature adipocytes is tightly regulated by the expression of genes encoding: peroxisome proliferator-activated receptor γ (PPARG), fatty acid-binding protein (FABP4), and glucose transporter-4 (SLC2A4), and adipokines such as leptin (LEP) and adiponectin (ADIPOQ). This study aimed to investigate the expression of these genes, which are associated with the pathogenesis of metabolic diseases in newborns and children exposed to arsenic in utero. A high arsenic exposed group showed significantly decreased PPARG and FABP4 expression in cord blood samples from newborns and in saliva samples from children. By contrast, the expression of the SLC2A4 and ADIPOQ mRNA was significantly decreased in high-arsenic exposed children. Furthermore, the levels of toenail arsenic were negatively correlated with the salivary mRNA expression levels of PPARG (r = -0.412, p < 0.01), aP2 (r = -0.329, p < 0.05), and SLC2A4 (r = -0.528, p < 0.01). In vitro studies utilizing umbilical cord derived mesenchymal stem cells (UC-MSCs) as a surrogate for fetal MSCs showed that arsenite treatment (0.5 µM and 1 µM) significantly impaired adipogenic differentiation in a concentration dependent manner. Such impairment may be related to a significant decrease in the expression of: PPARγ, FABP4, and SLC2A4 observed at 1 µM arsenite. Arsenite treatment also promoted inflammation through a significant increase in the mRNA expression levels of the pro-inflammatory adipokine, LEP, and the inflammatory cytokines: CXCL6, IL-1ß, and CXCL8. Collectively, our results suggests that such alterations may be a consequence of the effects of arsenic exposure on fetal MSCs eventually leading to impaired adipogenic differentiation and the promotion of inflammation, both of which contribute to the development of metabolic diseases later in life.


Subject(s)
Arsenic , Arsenites , Metabolic Diseases , Pregnancy , Female , Child , Infant, Newborn , Humans , Arsenic/metabolism , Arsenites/metabolism , Arsenites/pharmacology , PPAR gamma/genetics , PPAR gamma/metabolism , PPAR gamma/pharmacology , Cell Differentiation/genetics , Adipocytes/metabolism , Adipokines/genetics , Adipokines/metabolism , Adipokines/pharmacology , Metabolic Diseases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Inflammation
12.
Sci Signal ; 16(776): eabq0837, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36917643

ABSTRACT

Cellular stress granules arise in cells subjected to stress and promote cell survival. A cellular protein that localizes to stress granules is Z-DNA-binding protein 1 (ZBP1), which plays a major role in necroptosis, a programmed cell death pathway mediated by the kinase RIPK3. Here, we showed that the stress granule inducer arsenite activated RIPK3-dependent necroptosis. This pathway required ZBP1, which localized to arsenite-induced stress granules. RIPK3 localized to stress granules in the presence of ZBP1, leading to the formation of ZBP1-RIPK3 necrosomes, phosphorylation of the RIPK3 effector MLKL, and execution of necroptosis. Cells that did not form stress granules did not induce necroptosis in response to arsenite. Together, these results show that arsenite induces ZBP1-mediated necroptosis in a manner dependent on stress granule formation.


Subject(s)
Arsenites , Stress Granules , Necroptosis , Arsenites/pharmacology , Apoptosis , DNA-Binding Proteins
13.
Environ Toxicol Pharmacol ; 98: 104080, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36781116

ABSTRACT

Arsenite is a potent carcinogen and toxic compound inducing an array of deleterious effects via different mechanisms, which include the Ca2+-dependent formation of reactive oxygen species. The mechanism whereby the metalloid affects Ca2+ homeostasis involves an initial stimulation of the inositol 1, 4, 5-triphosphate receptor, an event associated with an endoplasmic reticulum (ER) stress leading to increased ERO1α expression, and ERO1α dependent activation of the ryanodine receptor (RyR). Ca2+ release from the RyR is then critically connected with the mitochondrial accumulation of Ca2+. We now report that the resulting formation of mitochondrial superoxide triggers a second mechanism of ER stress dependent ERO1α expression, which however fails to impact on Ca2+ release from the RyR or, more generally, on Ca2+ homeostasis. Our results therefore demonstrate that arsenite stimulates two different and sequential mechanisms leading to increased ERO1α expression with different functions, possibly due to their different subcellular compartmentalization.


Subject(s)
Arsenites , Ryanodine Receptor Calcium Release Channel , Arsenites/pharmacology , Calcium/metabolism , Homeostasis , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Oxidoreductases , Membrane Glycoproteins
14.
Cells ; 12(2)2023 01 08.
Article in English | MEDLINE | ID: mdl-36672194

ABSTRACT

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Subject(s)
Arsenites , Animals , Codon, Terminator , Arsenites/pharmacology , Arsenites/metabolism , Ribosomes/metabolism , Stress Granules , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oxidative Stress , Mammals/metabolism
15.
Cancer Med ; 12(3): 3260-3275, 2023 02.
Article in English | MEDLINE | ID: mdl-36000705

ABSTRACT

Arsenic compounds have been applied treating acute promyelocytic 1eukemia and solid tumors with brief mechanism investigations. In fact, we have demonstrated that sodium arsenite plus dimethylarsenic acid could activate apoptosis in MA-10 mouse Leydig tumor cells by inducing caspase pathways. However, detail underlying mechanisms how caspase cascade is regulated remains elusive. Therefore, the apoptotic mechanism of sodium arsenite plus dimethylarsenic acid were examined in MA-10 cells in this study. Our results reveal that Fas/FasL protein expressions were stimulated by sodium arsenite plus dimethylarsenic acid in MA-10 cells. In addition, reactive oxygen species (ROS) generation, cytochrome C release, Bid truncation, and Bax translocation were induced in MA-10 cells by arsenic compounds. Moreover, activation of p38, JNK and ERK1/2, MAPK pathways was stimulated while Akt phosphorylated levels and Akt expression were decreased by sodium arsenite plus dimethylarsenic in MA-10 cells. In conclusion, sodium arsenite and dimethylarsenic acid did activate MAPK pathway plus ROS generation, but suppress Akt pathway, to modulate caspase pathway and then induce MA-10 cell apoptosis.


Subject(s)
Arsenites , Neoplasms , Animals , Mice , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species/metabolism , Apoptosis , Arsenites/pharmacology , Caspases
16.
J Biol Chem ; 298(12): 102680, 2022 12.
Article in English | MEDLINE | ID: mdl-36356902

ABSTRACT

The poisonous metalloid arsenite induces widespread misfolding and aggregation of nascent proteins in vivo, and this mode of toxic action might underlie its suspected role in the pathology of certain protein misfolding diseases. Evolutionarily conserved protein quality-control systems protect cells against arsenite-mediated proteotoxicity, and herein, we systematically assessed the contribution of the ubiquitin-proteasome system, the autophagy-vacuole pathway, and chaperone-mediated disaggregation to the clearance of arsenite-induced protein aggregates in Saccharomyces cerevisiae. We show that the ubiquitin-proteasome system is the main pathway that clears aggregates formed during arsenite stress and that cells depend on this pathway for optimal growth. The autophagy-vacuole pathway and chaperone-mediated disaggregation both contribute to clearance, but their roles appear less prominent than the ubiquitin-proteasome system. Our in vitro assays with purified components of the yeast disaggregating machinery demonstrated that chaperone binding to aggregates formed in the presence of arsenite is impaired. Hsp104 and Hsp70 chaperone activity was unaffected by arsenite, suggesting that this metalloid influences aggregate structure, making them less accessible for chaperone-mediated disaggregation. We further show that the defect in chaperone-mediated refolding of a model protein was abrogated in a cysteine-free version of the substrate, suggesting that arsenite directly modifies cysteines in non-native target proteins. In conclusion, our study sheds novel light on the differential contributions of protein quality-control systems to aggregate clearance and cell proliferation and extends our understanding of how these systems operate during arsenite stress.


Subject(s)
Arsenites , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Arsenites/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , Ubiquitin/metabolism , Autophagy , Heat-Shock Proteins/metabolism
17.
J Biol Chem ; 298(12): 102586, 2022 12.
Article in English | MEDLINE | ID: mdl-36223837

ABSTRACT

Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.


Subject(s)
Arsenites , Selenious Acid , Arsenites/pharmacology , Carbon Isotopes/chemistry , Isotope Labeling/methods , Metabolic Networks and Pathways , Metabolomics/methods , Tandem Mass Spectrometry , Humans
18.
J Cell Biochem ; 123(12): 2079-2092, 2022 12.
Article in English | MEDLINE | ID: mdl-36191155

ABSTRACT

Prostate cancer (PCa) represents the second most common cancer in men and affects millions worldwide. Chemotherapy is a common treatment for PCa but the development of resistance is often a problem during therapy. NRF2 (nuclear factor erythroid 2-related factor 2) is one of the major transcription factors regulating antioxidant enzymes and is also involved with drug efflux and detoxification. Cancer cells submitted to chemotherapy often promote NRF2 activation to benefit themselves with the cytoprotective response. Here, we found that DU145 and PC3 PCa cell lines have different responses regarding NRF2 activation, when subjected to arsenite-induced stress, even in the presence of MG132, a proteasome inhibitor. We also observed that only in PC3 cells treated with arsenite, NRF2 was able to translocate to the nucleus. To better understand the role of NRF2 in promoting chemoresistance, we performed CRISPR knockout of NRF2 (NKO) in DU145 and PC3 cells. The effectiveness of the knockout was confirmed through the downregulation of NRF2 targets (p < 0.0001). PC3 NKO cells exhibited higher levels of reactive oxygen species (ROS) compared to wild-type cells (p < 0.0001), while this alteration was not observed in DU145 NKO cells. Despite no modulation in ROS content, a lower IC50 value (p < 0.05) for cisplatin was observed in DU145 NKO cells, suggesting that the knockout sensitized the cells to the treatment. Besides, the treatment of DU145 NKO with cisplatin led cells to apoptosis as observed by the increased levels of PARP1 cleavage (p < 0.05), possibly triggered by increased DNA damage. Reduced levels of KU70 and phospho-CHK2 (p < 0.05) were also detected. The data presented here support that NRF2 is a mediator of oncogenesis and could be a potential target to sensitize PCa cells to chemotherapy, reinforcing the importance of knowing the specific genetic and biochemical characteristics of the cancer cells for a more effective approach against cancer.


Subject(s)
Arsenites , Prostatic Neoplasms , Male , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arsenites/pharmacology , Arsenites/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor
19.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235115

ABSTRACT

The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.


Subject(s)
Antineoplastic Agents , Arsenic , Arsenites , Bufanolides , Glioblastoma , Antineoplastic Agents/pharmacology , Apoptosis , Arsenic/metabolism , Arsenites/pharmacology , Bufanolides/pharmacology , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans
20.
Environ Pollut ; 312: 120039, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36041566

ABSTRACT

The different effects of selenite and selenate on the fate of As and the function of iron plaque in the interaction between Se and As are poorly understood. Rice seedlings (Oryza sativa L.) were selected as experimental plants in this study, the hydroponic experiments were conducted to investigate the possible regulatory roles of selenite and selenate on the uptake, translocation, and transformation of arsenite or arsenate accompanied by iron plaque. In arsenite- and arsenate-treated rice, the Fe30 treatments stimulated root uptake by 12.4-39.8% and 18.6-37.0%, respectively, but inhibited the movement of As from iron plaque to the roots, resulting in the absorption of a considerable amount of As on iron plaque. Regardless of the iron plaque formation, selenite (selenate) significantly increased (decreased) the root uptake of arsenite and arsenate by 28.1-53.0% and 40.0%-61.7%, respectively (45.6-56.3% and 42.5-47.7%, respectively). Interestingly, the supply of selenite significantly reduced root-to-shoot As translocation by 71.9-77.3% and 66.2-67.7%, respectively, in arsenite- and arsenate-treated rice seedlings; however, a significant increase (90.5-122.9%) was induced by selenate was found only in the arsenate-treated plants. Furthermore, the translocation of As from iron plaque to the roots was significantly increased (decreased) by selenite (selenate). As and Fe in iron plaque were significantly positively correlated in all As-treated rice plants, and this correlation was more profound than that in the shoots and roots. However, neither Fe treatments nor inorganic Se addition affected the interconversion between As(III) and As(V) obviously; and As(III) was the dominant species in both shoots (68.3-84.9%) and roots (90.7-98.2%). Our results indicate selenite and selenate are effective in reducing the As accumulation in an opposite way, and the presence of iron plaque had no obvious impact on the interaction between Se and As in rice plants.


Subject(s)
Arsenic , Arsenites , Oryza , Arsenates , Arsenic/pharmacology , Arsenites/pharmacology , Iron/pharmacology , Plant Roots , Seedlings , Selenic Acid , Selenious Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...